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ABSTRACT
This paper explores the use of multi-microphone devices and artificial intelligence (AI) for
identifying noise events in unattended noise monitoring. The primary focus is to assess the
reliability of a machine learning model initially trained on a dataset representing a particular
soundscape. We evaluate the performance of this model when applied to diverse datasets collected
from similar yet distinct soundscapes, encompassing various environmental conditions and
noise profiles. Through comparative analysis, we determine the model’s adaptability and potential
limitations. The findings of this study offer insights into how well AI-based noise event identification
models can work in different situations. This lays the groundwork for enhancing their applicability
in diverse real-world settings and improving how well unattended noise monitoring systems
function.

1. INTRODUCTION

In recent years, machine learning (ML) and artificial intelligence (AI) have become increasingly
popular, and have been applied to a wide range of fields. This popularity has led to extensive
research and development, and it requires a large amount of labeled data for training ML models
[1].

In domains such as unattended noise monitoring, acquiring vast amounts of unlabeled
sound data is feasible. However, annotating this data can be excessively time-consuming. To
address this challenge, a strategy can involve initially training a model on a large dataset from a
different domain and subsequently fine-tuning it with a smaller annotated dataset from the target
domain.
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This paper presents a comparative study of noise event identification utilizing AI in
unattended sound monitoring. Specifically, we construct an ML model based on data from
one unattended noise monitoring station and evaluate its performance on data from another
monitoring station. We begin by providing relevant background theory, followed by outlining an
approach for comparing the performance of various ML models. Subsequently, we present the
results of our study and discuss their implications for enhancing unattended noise monitoring
systems.

2. BACKGROUND

A soundscape describes the acoustic environment as perceived by humans within a given context.
Each soundscape is unique, and is comprised of multiple sounds originating from various sources
such as traffic, construction activities, natural elements like flowing rivers, birds, and human
interactions. To differentiate between distinct auditory phenomena within a soundscape, the
term “sound event” is employed. A sound event represents a perceivable entity characterized
by its acoustic attributes, which can be further described by temporal, spectral, and spatial
properties. Temporal characteristics encompass parameters such as duration and onset, spectral
properties involve the frequency content, while spatial properties relate to the direction and
distance of the sound source.

Despite the semantic similarity of sounds across different soundscapes, their acoustic
characteristics often vary significantly. For instance, the sound of a car horn in an urban
environment differs from its counterpart in a rural setting. In urban locales, car horn sounds are
typically embedded within other urban noises, whereas in rural settings, car horns resonate more
distinctly and directly. These divergent acoustic profiles illustrate how environmental context
influences the perception of sound [2].

Humans possess an ability to distinguish between different sounds and discern their sources
effortlessly. Whether identifying the material composition of a falling object or recognizing the
nature of a distant sound, humans excel in sound recognition [3]. However, for a machine, this
is a difficult task. Machine-based sound recognition requires training algorithms to discern
between various sound classes using ML techniques. In a supervised learning approach, the
system undergoes training on labeled datasets, and learns to recognize the different sounds. The
approach requires a set of classes describing the sounds, defined by a system developer, and
a sufficient amount of labeled data for each class. Subsequently, the system’s performance is
assessed using separate labeled datasets, resulting in an evaluation of its classification. Once
trained, the system can classify unlabeled data within a given soundscape [2].

When evaluating the performance of a ML model, one can employ various metrics to assess
its classification accuracy. Common metrics include accuracy, precision, recall, and F1-score.
Accuracy measures the proportion of correctly classified instances among all instances, following
the formula:

Accuracy = No. of correct predictions

Total no. of predictions
(1)

Precision measures the proportion of true positive predictions out of all positive predictions,
following the formula:

Precision = True positives

True positives+False positives
(2)

Recall, on the other hand, measures the proportion of correctly classified instances among
all instances that are actually positive, following the formula:

Recall = True positives

True positives+False negatives
(3)
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The F1-score is the harmonic mean of precision and recall, and provides a single metric to
evaluate the model’s performance, following the formula:

F1-score = 2 · Precision ·Recall

Precision+Recall
(4)

In addition to these metrics, one can also use the confusion matrix to visualize the model’s
performance. The confusion matrix displays the number of true positives, true negatives, false
positives, and false negatives, and provides a comprehensive overview of the model’s classification
accuracy.

When designing a classification system, also called a taxonomy, it’s important to account for
both the complexity of the soundscape and the range of sound events. A well-designed taxonomy
should be clear and comprehensive, and it should balance the granularity of the classes to ensure
that each category is distinct and meaningful within the context of the soundscape [4]. It should
be designed to accommodate a sufficient number of instances for each class to enable effective
model training and evaluation. Furthermore, the taxonomy should be flexible and adaptable to
accommodate new classes or categories as needed.

3. METHOD AND RESULTS

Construction activities are significant contributors to urban noise pollution, often causing
annoyance for both residents and workers. To assess the performance of a ML model trained on
data from one domain and applied to another, we collected data from two distinct construction
sites. The first site, referred to as “Location A”, pertains to the construction of a new hospital in
Drammen, Norway. Meanwhile, the second site, referred to as “Location B”, involves the renewal
of an existing hospital in Oslo, Norway. Despite both sites being situated within complex urban
soundscapes, they exhibit different sound profiles attributed to various sources. However, both
datasets are annotated using the same taxonomy, facilitating direct comparison.

This section outlines the methodology employed for conducting the study and presents the
results. Firstly, we introduce the taxonomy utilized for annotating the collected data. Then, we
present the performance results of ML models trained independently on datasets from Location
A and Location B. Following this, we detail the outcomes of fine-tuning the ML model trained on
Location A with a smaller annotated dataset from Location B. Lastly, we present the findings of the
comparative study, which evaluates the efficacy of the ML model across both construction sites.

3.1. Taxonomy

To ensure consistency in evaluating the performance of the ML model across both datasets, we
employ a standardized taxonomy for annotation. This taxonomy describes various sound sources
that are common for construction sites and is defined by the system developer. Table 1 presents
the taxonomy used for annotation, categorizing sound events into distinct classes based on their
origin and characteristics.

The taxonomy encompasses a comprehensive range of sound sources typically encountered
in construction environments. However, it’s important to acknowledge instances where certain
sounds may not neatly fit into predefined categories. In dynamic environments like construction
sites, ambient noise levels can fluctuate significantly, often resulting in the emergence of sounds
that defy easy classification.

3.2. Location A: Drammen hospital construction site

The dataset from Location A serves as the primary training dataset for the ML model employed
in our analysis. Collected over a span from 2019 to 2023, the data originates from an unattended
noise monitoring system (Norsonic Nor1545 with Noise Compass). Situated within an urban
environment, the construction site presents a complex soundscape characterized by diverse
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Table 1: Taxonomy for construction noise.

Category Description

Rattling Sounds such as piling

Circ. saw Cutting materials with a circular saw

Dump crush Dumping or crushing materials

Shovel Shovel digging

Metal metal dropping

Rev. signal Beeping noise when a truck reverses

Helicopter Helicopters flying over the monitoring station

sound sources, including nearby railway and highway traffic, as well as industrial activities from
neighboring facilities. For visual context, Figure 1 illustrates the layout of the construction site in
Drammen, Norway.

Figure 1: Location A, the construction site for the new hospital in Drammen, Norway [5].

The data utilized to train the ML model was randomly sampled from the entire measurement
period at Location A. Each data sample was annotated to align with a taxonomy comprising seven
distinct classes, as depicted in Figure 2. To ensure the robustness of our training dataset,
recordings were included only if they met a minimum threshold of 35 annotated instances per
class. This criterion serves to maintain a balanced representation of sound events across all
categories.
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Figure 2: Location A taxonomy distribuiton.
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Upon evaluation on the test dataset from Location A, the resulting ML model attained
performance metrics summarized in Table 2. Additionally, the confusion matrix, providing a
breakdown of classification outcomes, is presented in Table 3.

Table 2: Performance metrics for Location A model.

Metric Accuracy Precision Recall F1-score

Value 0.99 0.95 0.96 0.95

Table 3: Location A confusion matrix.

Predicted

Rattling Circ. saw Dump crush Shovel Metal Rev. signal Helicopter

A
ct

u
al

Rattling 35 0 0 0 0 0 0

Circ. saw 0 2 0 0 0 0 0

Dump crush 0 0 10 0 0 0 0

Shovel 0 0 0 2 0 0 0

Metal 0 0 2 0 14 0 0

Rev. signal 0 1 0 0 0 3 0

Helicopter 0 0 0 0 0 0 2

3.3. Location B: Oslo hospital construction site

The test dataset obtained from Location B was acquired using the same unattended noise
monitoring system utilized at Location A, spanning a duration of three days. Situated within a
comparable yet different urban environment, the construction site at Location B features distinct
sound sources including a nearby tram station, a helipad, and proximity to a highway, as depicted
in Figure 3.

Figure 3: Location B, the construction site for the new hospital in Oslo, Norway.

The test dataset was selected from a specific period of construction activity spanning
the three-day measurement period. This selection process ensures that the dataset captures a
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representative sample of sound events encountered during active construction work at Location
B.

Furthermore, the class distribution within the training dataset is illustrated in Figure 4. To
maintain consistency and robustness, only recordings containing a minimum of 35 annotated
instances per class were included in the training set.
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Figure 4: Location B taxonomy distribuiton.

Upon evaluation on the test dataset from Location B, the resulting ML model attained
performance metrics summarized in Table 4. Additionally, the confusion matrix is presented in
Table 5.

Table 4: Performance metrics for Location B model.

Metric Accuracy Precision Recall F1-score

Value 0.93 0.81 0.85 0.82

Table 5: Location B confusion matrix.

Predicted

Rattling Circ. saw Dump crush Metal Rev. signal Helicopter

A
ct

u
al

Rattling 27 0 0 0 0 0

Circ. saw 6 29 0 0 0 0

Dump crush 3 0 5 0 0 0

Metal 2 0 0 4 0 0

Rev. signal 1 0 0 0 0 0

Helicopter 0 0 0 0 0 6

3.4. Fine-tuning the model

When evaluating the ML model trained on Location A using the dataset from Location B, it was
observed that the model’s performance did not match its performance on the original dataset.
The performance metrics are detailed in Table 6, with a comprehensive breakdown provided in
the confusion matrix in Table 7.

To enhance the model’s performance on test data from Location B, we fine-tuned the model
using a subset of annotated data from Location B. This process involved retraining the model on
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Table 6: Performance metrics for Location A model tested on Location B dataset.

Metric Accuracy Precision Recall F1-score

Value 0.81 0.33 0.44 0.31

Table 7: Confusion matrix for Location A model tested on Location B dataset.

Predicted

Rattling Circ. saw Dump crush Shovel Metal Rev. signal Helicopter

A
ct

u
al

Rattling 51 101 0 23 0 19 1

Circ. saw 26 193 0 3 0 11 0

Dump crush 21 12 0 21 0 2 0

Shovel 0 0 0 10 0 0 0

Metal 26 8 0 43 0 7 0

Rev. signal 5 1 0 1 0 20 0

Helicopter 17 1 0 1 0 3 17

the dataset to adapt its parameters to the new environment. The class distribution of the fine-
tuned model is illustrated in Figure 5, showing the inclusion of data from both locations.
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Figure 5: Combined model from Location A and Location B.

Upon evaluation on the remaining test dataset from Location B, the fine-tuned ML model
achieved performance metrics summarized in Table 8. Additionally, the confusion matrix is
presented in Table 9.

Table 8: Performance metrics for fine-tuned model based on datset from Location A and B, tested
on Location B dataset

Metric Accuracy Precision Recall F1-score

Value 0.95 0.86 0.80 0.82

In the following section, we will look further into the results of our study and explore their
implications.
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Table 9: Confusion matrix for Location A model tested on Location B dataset

Predicted

Rattling Circ. saw Dump crush Shovel Metal Rev. signal Helicopter

A
ct

u
al

Rattling 86 2 0 5 4 0 1

Circ. saw 8 111 0 0 1 2 0

Dump crush 1 2 19 1 5 0 0

Shovel 0 0 0 8 2 0 0

Metal 4 0 4 5 29 0 0

Rev. signal 3 1 1 1 3 7 1

Helicopter 5 0 0 0 0 1 16

4. DISCUSSION

In this chapter, we delve into the findings from our study, examining the performance of the ML
models trained and fine-tuned on datasets from Location A and Location B. We also explore the
implications of our results, particularly regarding the need for additional annotated data from
Location B and the challenges posed by the complex urban soundscape.

Our evaluation of the ML models used performance metrics including accuracy, precision,
recall, and F1-score. Upon analysis, the ML model trained on the dataset from Location A showed
high performance on its original dataset, achieving an accuracy of 0.99 and an F1-score of 0.95,
indicating its efficacy in classifying sound events within that environment. However, when tested
on the dataset from Location B, the model’s performance notably declined, to a precision of 0.33
and a recall of 0.44. These metrics underscore the model’s struggle with false positives and false
negatives. This struggle could be a result of the model’s overfitting to the specific characteristics
of Location A. Consequently, the model shows poor generalization when applied to a different
environment. This emphasizes the importance of considering the unique characteristics of each
environment during both training and evaluation phases.

The ML model trained on the dataset from Location B showed lower performance on its
original dataset compared to the fine-tuned model. While achieving an accuracy of 0.93 and
an F1-score of 0.82, this model’s performance improved following fine-tuning, resulting in an
accuracy of 0.95 and an F1-score of 0.82. While these improvements are not groundbreaking,
they underscore the utility of fine-tuning, especially when dealing with limited annotated data.
This finding suggests that fine-tuning serves as a strategy for enhancing model performance under
such constraints.

Annotating sound data into a set of predefined classes presented several challenges,
primarily due to the complexity of the urban soundscape. Many recordings contained multiple
sound sources, making it difficult to attribute specific events to individual classes accurately.
This variability in the soundscape contributed to instances of misclassification by the fine-tuned
model.

These challenges underscored the necessity for fine-tuning with data from Location B
to achieve satisfactory model performance. Despite similarities between construction sites at
Locations A and B, the distinct sound profiles and environmental factors at Location B requires
a tailored approach to model training. The subset selected for fine-tuning was guided by two
primary criteria: firstly, the availability of data from Location B, which was constrained by
measurement duration, and secondly, the objective to maintain a balanced representation of each
category within the taxonomy across both the training and fine-tuning datasets.
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To apply a ML model for a new monitoring site, one must consider the soundscape’s unique
characteristics and the availability of annotated data. The results of our study suggest that a model
trained on data from one location may not perform optimally when applied to another location.
However, by annotating a smaller subset of data from the new location and fine-tuning the model,
one can achieve improved performance. This approach is particularly relevant in unattended
monitoring scenarios where acquiring big amounts of annotated data is challenging.

5. CONCLUSION

We conducted a study to evaluate the performance of ML models trained and fine-tuned using
datasets collected from two different construction site locations: Location A and Location B. Our
evaluation utilized performance metrics, including accuracy, precision, recall, and F1-score, to
measure the models’ performance.

The ML model trained on data from Location A achieved high performance on its original
dataset, achieving an accuracy of 0.99 and an F1-score of 0.95. However, when subjected to
testing on the dataset from Location B, the model’s performance notably declined, with precision
dropping to 0.33 and recall to 0.44. This difference underscores the importance of accounting for
the characteristics of each environment during model development and evaluation.

Despite the similarities between the construction sites at Locations A and B, the distinct
sound profiles and environmental factors at Location B required a customized approach to model
training. Through a fine-tuning process, which involved retraining the model using a subset of
annotated data from Location B, yielded significant improvements in the model’s performance.
This outcome highlights the utility of fine-tuning methodologies, particularly in scenarios where
annotated data is limited.
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